If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-70t+612.5=0
a = 1; b = -70; c = +612.5;
Δ = b2-4ac
Δ = -702-4·1·612.5
Δ = 2450
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2450}=\sqrt{1225*2}=\sqrt{1225}*\sqrt{2}=35\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-35\sqrt{2}}{2*1}=\frac{70-35\sqrt{2}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+35\sqrt{2}}{2*1}=\frac{70+35\sqrt{2}}{2} $
| 20+50+2=x-2 | | 22-6x=6x+10 | | 78.4=4.9*t^2 | | (x3+x3)=0 | | 78.4=4.9*t² | | 78.4=4.9*t | | 5m52m=125 | | x,5x+7=37 | | 8x+5=6x5 | | 90x-x^2=180 | | m/5m52m=125 | | y=175(1.028)^(5) | | x(13)=15.81(1.047)^13 | | 3a*7=25 | | x/0.2=12 | | (1.20x1.51)/(.82)= | | 6x^2+5=26 | | y=12(1+0.5)^(5) | | -2m+4=-16 | | 2(y-3)–3(y-2)=6 | | (2y-9)=^2 | | C(2)=25p | | 3/5(x)+3=x-1 | | 1.5x=210 | | –9g+7=–8g | | 2x-4+6x=2(4x-2) | | (2j+3/3)=(3j-1/6) | | -10x-12=-8x+8 | | x×3=45 | | 2x-9+13=180 | | a=10,000(1.05)^2 | | -18=3–4x–8 |